• <tr id='YmBNXz'><strong id='YmBNXz'></strong><small id='YmBNXz'></small><button id='YmBNXz'></button><li id='YmBNXz'><noscript id='YmBNXz'><big id='YmBNXz'></big><dt id='YmBNXz'></dt></noscript></li></tr><ol id='YmBNXz'><option id='YmBNXz'><table id='YmBNXz'><blockquote id='YmBNXz'><tbody id='YmBNXz'></tbody></blockquote></table></option></ol><u id='YmBNXz'></u><kbd id='YmBNXz'><kbd id='YmBNXz'></kbd></kbd>

    <code id='YmBNXz'><strong id='YmBNXz'></strong></code>

    <fieldset id='YmBNXz'></fieldset>
          <span id='YmBNXz'></span>

              <ins id='YmBNXz'></ins>
              <acronym id='YmBNXz'><em id='YmBNXz'></em><td id='YmBNXz'><div id='YmBNXz'></div></td></acronym><address id='YmBNXz'><big id='YmBNXz'><big id='YmBNXz'></big><legend id='YmBNXz'></legend></big></address>

              <i id='YmBNXz'><div id='YmBNXz'><ins id='YmBNXz'></ins></div></i>
              <i id='YmBNXz'></i>
            1. <dl id='YmBNXz'></dl>
              1. <blockquote id='YmBNXz'><q id='YmBNXz'><noscript id='YmBNXz'></noscript><dt id='YmBNXz'></dt></q></blockquote><noframes id='YmBNXz'><i id='YmBNXz'></i>

                Computational Prediction of Driver Genes in Cancer Genome Sequencing Studies

                发布者:文明办作者:发布时间:2020-09-23浏览次数:87


                主讲人:刘鹏渊  浙江大学教授


                时间:2020年9月26日13:00


                地点:三号楼332会议厅


                举办单位:数理学院


                主讲⊙人介绍:刘鹏渊博士,2016年加盟浙江大学转化医学研究院以及医学∮院附属邵逸夫医院。回国前任威斯康辛医学院的副教授和担任其医学院系统分子医学中心的计算生物学负责人。长期从事生物信息学、基因组学和癌症遗传的研究。已在生物信息学等领域发表了118篇包括Nature Genetics、JNCI、AJHG、PNAS、Nucleic Acids Research、Cancer Research、Oncogene和Bioinformatics等SCI论文。2010年获教育部自然科学ω奖一等奖(第5完成人)。担任Physiological Genomics等杂志的编委、威斯康星医学院兼职教授、全国卫生产业企业管理协会精准医疗分会常务理事、浙江省生物信息学学会精准医学↑专业委员会副主委、浙江省数理医学会甲状腺疾病专委会副主委、浙江省数理医学会生物医学大数据专委会常务委员。


                内容介绍:Cancer is a genetic disease with somatically acquired genomic aberrations. Driver mutations are required for the cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. Several major cancer sequencing projects, such as The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) have created a comprehensive catalog of somatic mutations across all major cancer types. A major goal of these sequencing projects is to identify cancer genes with mutations that drive the cancer phenotype. Better identification of cancer driver genes would inform potential therapies targeted against the products of these aberrant genomic alterations in addition to fundamentally advancing the knowledge of tumor initiation, promotion and progression. In my presentation, I will briefly review several computational tools for prioritizing cancer driver genes from cancer genome sequencing projects. In particular, I will focus on two computational tools (DrGaP and DriverML) developed in my laboratory to identify cancer driving genes.